Add like
Add dislike
Add to saved papers

Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions.

Removal potentials of a surfactant modified zeolite (SMZ) and clay (SMC) for atrazine adsorption were evaluated. Materials were modified with hexadecyl trimethyl ammonium bromide (HDTMA-Br) and benzyl octadecyl dimethyl ammonium (BODA) chloride considering the critical micellar concentration (CMC) of each one (0.94 and 0.041 meq/L, respectively). The influence of the surfactant was analyzed in detail, particularly the formation of surfactant layers (complete or partial) connected with the length of the surfactant tail (16 and 18 methyl groups or number of carbons in the chain). Raw materials were characterized by XRD and Fourier transform infrared spectroscopy (FTIR), SMZ and SMC were analyzed by FTIR. Results obtained from kinetic adsorption experiments shown that equilibrium time is less for materials modified with HDTMA (8 h) than materials with BODA (10 and 12 h). Materials modified with the largest chain surfactant (BODA) showed more resistance to atrazine masse transference. The chemisorption was presented in the adsorption mechanisms of atrazine and adsorbent materials. Based on the results of adsorption isotherms Langmuir isotherms showed the better correlation coefficients value. The qmax is greater for materials modified with BODA (0.9232 and 4.2448 mg/g) than for materials modified with HDTMA (0.6731 and 3.9121 mg/g). Therefore, SMZ and SMC modified with the largest chain surfactant has more affinity for the pesticide. The removal process at high concentration of atrazine depends of the partition process but at lower concentration, it occurs not only by this process but also by absorption process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app