Add like
Add dislike
Add to saved papers

Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery.

Poly(ethylene glycol)-b-polypeptide block copolymer micelles, with excellent safety, are one of the most clinically studied nanocarriers for anticancer drug delivery. Notably, self-assembled nanosystems based on hydrophobic polypeptides showing typically a low drug loading and burst drug release are limited to preclinical studies. Here, we report that poly(ethylene glycol)-b-poly(α-aminopalmitic acid) (PEG-b-PAPA) block copolymer could be easily prepared with tailored Mn through ring-opening polymerization of α-aminopalmitic acid N-carboxyanhydride (APA-NCA). Interestingly, PEG-b-PAPA copolymers exhibited superb solubility in common organic solvents (including CHCl3 , CH2 Cl2 , and THF), while stable nanomicelles were formed in phosphate buffer, with a small size of 59 nm and a low critical micelle concentration of 2.38 mg/L. These polylipopeptide micelles (Lipep-Ms) allowed facile loading of a potent anticancer drug, docetaxel (DTX), likely due to the existence of a strong interaction between the lipophilic drug and polylipopeptide in the core. Notably, cRGD-peptide-functionalized Lipep-Ms (cRGD-Lipep-Ms) were also obtained with similar biophysical characteristics. The in vitro studies showed efficient cellular uptake of DTX-loaded cRGD-Lipep-Ms by B16F10 cells and fast intracellular drug release due to the enzymatic degradation of PAPA blocks in endo/lysosome, leading to a pronounced anticancer effect (IC50 = 0.15 μg DTX equiv/mL). The in vivo therapy studies showed that DTX-cRGD-Lipep-Ms exhibited superior tumor growth inhibition of B16F10 melanoma, improved survival rate, and little side effects as compared to free DTX. These polylipopeptide micelles appear as a promising and robust nanoplatform for anticancer drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app