Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Incorporating LsrK AI-2 quorum quenching capability in a functionalized biopolymer capsule.

Antibacterial resistance is an issue of increasing severity as current antibiotics are losing their effectiveness and fewer antibiotics are being developed. New methods for combating bacterial virulence are required. Modulating molecular communication among bacteria can alter phenotype, including attachment to epithelia, biofilm formation, and even toxin production. Intercepting and modulating communication networks provide a means to attenuate virulence without directly interacting with the bacteria of interest. In this work, we target communication mediated by the quorum sensing (QS) bacterial autoinducer-2, AI-2. We have assembled a capsule of biological polymers alginate and chitosan, attached an AI-2 processing kinase, LsrK, and provided substrate, ATP, for enzymatic alteration of AI-2 in culture fluids. Correspondingly, AI-2 mediated QS activity is diminished. All components of this system are "biofabricated"-they are biologically derived and their assembly is accomplished using biological means. Initially, component quantities and kinetics were tested as assembled in microtiter plates. Subsequently, the identical components and assembly means were used to create the "artificial cell" capsules. The functionalized capsules, when introduced into populations of bacteria, alter the dynamics of the AI-2 bacterial communication, attenuating QS activated phenotypes. We envision the assembly of these and other capsules or similar materials, as means to alter QS activity in a biologically compatible manner and in many environments, including in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app