Add like
Add dislike
Add to saved papers

Anti-connective tissue growth factor detects and reduces plaque inflammation in early-stage carotid atherosclerotic lesions.

This study explored connective tissue growth factor (CTGF)-targeted ultrasmall superparamagnetic iron oxides (USPIOs) for noninvasive MRI of CTGF within carotid atherosclerotic lesions in apoE-deficient (apoE-/- ) mice. Anti-CTGF polyclonal and nonspecific IgG antibodies were conjugated to polyethylene glycol-coated USPIOs, and apoE-/- carotid partial ligation-model mice were imaged via MRI before and after contrast administration. ApoE-/- mice were treated with CTGF-neutralizing antibodies for 3 weeks. Carotid artery diameter and plaque volume were measured via MRI in IgG and CTGF antibody-treated groups. Anti-CTGF-USPIO-treated macrophages showed the greatest iron uptake. MRI signal loss was observed in carotid atherosclerotic lesions 24 h after anti-CTGF-USPIO administration, consistent with the presence of nanoparticles, as indicated by pathological examinations. Atheromata in anti-CTGF-treated mice showed reduced macrophage deposition, CTGF expression, and plaque volume. Anti-CTGF-USPIOs can be used for the direct detection of CTGF and imaging of atherosclerotic lesions in vivo. CTGF is a potential therapeutic target for treating atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app