JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Breaking the mirror: l-Amino acid deaminase, a novel stereoselective biocatalyst.

Biotechnology Advances 2017 November 2
Enantiomerically pure amino acids are of increasing interest for the fine chemical, agrochemicals and pharmaceutical industries. During past years l-amino acids have been produced from deracemization of dl-solution employing the stereoselective flavoenzyme d-amino acid oxidase. On the other hand, the isolation of corresponding d-isomer was hampered by the scarce availability of a suitable l-amino acid oxidase activity. On this side, l-amino acid deaminase (LAAD), only present in the Proteus bacteria, represents a suitable alternative. This FAD-containing enzyme catalyzes the deamination of l-amino acids to the corresponding α-keto acids and ammonia, with no hydrogen peroxide production (a potentially dangerous oxidizing species) since the electrons of the reduced cofactor are transferred to a membrane-bound cytochrome. Very recently the structure of LAAD has been solved: in addition to a FAD-binding domain and to a substrate-binding domain, it also possesses an N-terminal putative transmembrane α-helix (residues 8-27, not present in the crystallized protein variant) and a small α+β subdomain (50-67 amino acids long, named "insertion module") strictly interconnected to the substrate binding domain. Structural comparison showed that LAAD resembles the structure of several soluble amino acid oxidases, such as l-proline dehydrogenase, glycine oxidase or sarcosine oxidase, while only a limited structural similarity with d- or l-amino acid oxidase is apparent. In this review, we present an overview of the structural and biochemical properties of known LAADs and describe the advances that have been made in their biotechnological application also taking advantage from improved variants generated by protein engineering studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app