Add like
Add dislike
Add to saved papers

Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells.

Resistance against chemotherapy is still a major problem in successful cancer treatment in the clinic. Therefore, identifying new compounds with lower side-effects and higher efficacy is an important approach to overcome multidrug resistance (MDR). Here, we investigated the activity and possible mechanism of the antidiabetic drug, metformin, in human doxorubicin (DOX)-resistant breast cancer (MCF-7/DOX) cells. The effect of metformin on the cytotoxicity of DOX was evaluated by MTT assay. The P-gp mRNA/protein expression levels following treatment with metformin were determined using real-time polymerase chain reaction and Western blot analysis, respectively. Intracellular rhodamine 123 accumulation assay was performed to evaluate the P-gp function. Cellular ATP content was determined using ATP assay kit. The effect of metformin on DOX-induced apoptosis was evaluated by annexin V/FITC assay. Exposure to metformin considerably enhanced the cytotoxicity of DOX. Metformin had no substantial effect on P-gp expression, while the activity of P-gp and intracellular ATP content decreased with metformin treatment in a dose-dependent manner. Furthermore, metformin significantly increased the DOX-induced apoptosis. These results indicate that metformin could reverse MDR in breast cancer cells by reducing P-gp activity. Therefore, metformin can be suggested as a potent adjuvant in breast cancer chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app