JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats.

POU3F2/BRN-2 is a transcription factor that is mainly expressed in the central nervous system and plays an important role in brain development. The transactivation domain of POU3F2 includes multiple mammalian-characteristic tandem amino acid repeats (homopolymeric amino acid repeats). We previously generated knock-in mice (Pou3f2Δ/Δ mice) in which all three homopolymeric amino acid repeats were deleted from the Pou3f2 transactivation domain and identified phenotypic impairments in maternal behavior and pup recognition. Yet, the exact biological implications of homopolymeric repeats are not completely understood. In this study, we investigated cognitive function and hippocampal neurogenesis in Pou3f2Δ/Δ mice. Pou3f2Δ/Δ mice exhibited cognitive impairment in object recognition and object location tests. Immunohistochemistry for doublecortin, a marker of immature neurons, showed a lower number of newborn neurons in the dentate gyrus of adult Pou3f2Δ/Δ mice compared with wild-type mice. Consistent with this observation, adult Pou3f2Δ/Δ mice had lower numbers of 5-bromo-2'-deoxyuridine (BrdU) and NeuN double-positive cells at 4 weeks after BrdU injection compared with control mice, indicating the decreased generation of mature granule cells in Pou3f2Δ/Δ mice. Taken together, these results suggest that POU3F2 is involved in cognitive function as well as adult hippocampal neurogenesis, and that homopolymeric amino acid repeats in this gene play a functional role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app