Add like
Add dislike
Add to saved papers

Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning.

BACKGROUND AND PURPOSE: Trials of restorative therapies after stroke and clinical rehabilitation require relevant and objective efficacy end points; real-world upper extremity (UE) functional use is an attractive candidate. We present a novel, inexpensive, and feasible method for separating UE functional use from nonfunctional movement after stroke using a single wrist-worn accelerometer.

METHODS: Ten controls and 10 individuals with stroke performed a series of minimally structured activities while simultaneously being videotaped and wearing a sensor on each wrist that captured the linear acceleration and angular velocity of their UEs. Video data provided ground truth to annotate sensor data as functional or nonfunctional limb use. Using the annotated sensor data, we trained a machine learning tool, a Random Forest model. We then assessed the accuracy of that classification.

RESULTS: In intrasubject test trials, our method correctly classified sensor data with an average of 94.80% in controls and 88.38% in stroke subjects. In leave-one-out intersubject testing and training, correct classification averaged 91.53% for controls and 70.18% in stroke subjects.

CONCLUSIONS: Our method shows promise for inexpensive and objective quantification of functional UE use in hemiparesis, and for assessing the impact of UE treatments. Training a classifier on raw sensor data is feasible, and determination of whether patients functionally use their UE can thus be done remotely. For the restorative treatment trial setting, an intrasubject test/train approach would be especially accurate. This method presents a potentially precise, cost-effective, and objective measurement of UE use outside the clinical or laboratory environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app