Journal Article
Review
Add like
Add dislike
Add to saved papers

Emerging MS-based platforms for the characterization of tumor-derived exosomes isolated from human biofluids: challenges and promises of MudPIT.

INTRODUCTION: Exosomes are small extracellular vesicles of endosomal origin that are produced and released by several type of cells. These vesicles contain different macromolecules: proteins, mRNA, miRNA, mitochondrial DNA, and lipids. Exosomes play an important role in cell-to-cell communication, also promoting cancer progression. Areas covered: Various proteomic approaches have been applied to study exosomes isolated from different human biofluids in search of possible cancer biomarkers. The results of these studies are reported, and pros and cons of each employed technique are described. Gel-free and gel-based mass spectrometry systems are discussed, giving particular emphasis on the innovative multidimensional protein identification technology (MudPIT). Expert commentary: Proteomic studies on exosomes as candidate cancer biomarkers from urine and other body fluids in cancer have shown the potential of MS-based techniques. In particular, MudPIT is a promising tool to be applied in clinical proteomics of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app