Add like
Add dislike
Add to saved papers

Effect of a typical antibiotic (tetracycline) on the aggregation of TiO 2 nanoparticles in an aquatic environment.

The effect of tetracycline (TC) on the behavior of TiO2 nanoparticles (NPs) in solution is investigated. The results illustrate that TC molecules do not exhibit an obvious effect on the aggregation of TiO2 NPs under circumneutral conditions (pH of approximately 5.5). However, the TC molecules exhibit a remarkable effect on the behavior of TiO2 NPs when the environmental factors (such as pH, ionic strength, and humic acid; HA) are adjusted. In the pH range from 3.0 to 10.0, the zeta potentials of NPs become more positively charged after TC adsorption. The point of zero charge of the TiO2 NPs increases from 6.5 to 7.5. The stability of the TiO2 NPs is improved after TC adsorption in different salt solutions. The critical coagulation concentration (CCC) increases from 10.57mmol/L to 17.21mmol/L, 4.95mmol/L to 9.73mmol/L, and 0.23-1.67mmol/L in the presence of NaCl, CaCl2 , and Na2 SO4 (where Cl- and SO4 2- are the counter-ions), respectively. Under different HA concentrations, the CHAPZC (the HA concentration that causes the zeta potential of NPs to be zero) increases from 0.5mg/L to 1.3mg/L after TC adsorption. The sizes of the TiO2 NP aggregates are larger than those without TC adsorption. All of these results are due to an increase in the surface charge of the TiO2 NPs after TC adsorption. The adsorption of H+ during TC adsorption causes protonation of the dimethylamine group on the TC molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app