Add like
Add dislike
Add to saved papers

Schisandrin rescues depressive-like behaviors induced by chronic unpredictable mild stress via GDNF/ERK1/2/ROS and PI3K/AKT/NOX signaling pathways in mice.

Psychiatry Research 2017 August 2
The current study aimed to prove the antidepressant-like effects and the probable mechanisms of Schisandrin on depression, which induced by chronic unpredictable mild stress (CUMS) in mice. Four weeks of CUMS exposure resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there were significant downregulations of GDNF/ERK1/2/ROS and PI3K/AKT/NOX signaling pathways in the hippocampus and prefrontal cortex in depressed mice. Treatment of mice with Schisandrin (30mg/kg) and Fluoxetine (10mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by CUMS. These results suggest that Schisandrin produces an antidepressant-like effect in CUMS-induced mice, which possibly mediated, at least in part, by rectifying the signaling pathways of GDNF/ERK1/2/ROS and PI3K/AKT/NOX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app