Clinical Trial
Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B.

Hepatic fibrosis is a common middle stage of the pathological processes of chronic liver diseases. Clinical intervention during the early stages of hepatic fibrosis can slow the development of liver cirrhosis and reduce the risk of developing liver cancer. Performing a liver biopsy, the gold standard for viral liver disease management, has drawbacks such as invasiveness and a relatively high sampling error rate. Real-time tissue elastography (RTE), one of the most recently developed technologies, might be promising imaging technology because it is both noninvasive and provides accurate assessments of hepatic fibrosis. However, determining the stage of liver fibrosis from RTE images in a clinic is a challenging task. In this study, in contrast to the previous liver fibrosis index (LFI) method, which predicts the stage of diagnosis using RTE images and multiple regression analysis, we employed four classical classifiers (i.e., Support Vector Machine, Naïve Bayes, Random Forest and K-Nearest Neighbor) to build a decision-support system to improve the hepatitis B stage diagnosis performance. Eleven RTE image features were obtained from 513 subjects who underwent liver biopsies in this multicenter collaborative research. The experimental results showed that the adopted classifiers significantly outperformed the LFI method and that the Random Forest(RF) classifier provided the highest average accuracy among the four machine algorithms. This result suggests that sophisticated machine-learning methods can be powerful tools for evaluating the stage of hepatic fibrosis and show promise for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app