Add like
Add dislike
Add to saved papers

Erythropoietin Attenuates Cardiac Dysfunction in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Diabetic Cardiomyopathy.

PURPOSE: Enhanced endoplasmic reticulum (ER) stress and down-regulated SERCA2a expression play crucial roles in diabetes. We aimed to verify whether erythropoietin (EPO) attenuates cardiac dysfunction by suppressing ER stress in diabetic rats.

METHODS: Forty male SD rats were randomly divided into four groups: control, EPO-treated control, vehicle-treated diabetic, and EPO-treated diabetic groups. The animals in the EPO-treated control and diabetic groups were administered recombinant human EPO (1000 U/kg body weight) once per week for 12 weeks. RT-PCR and Western blotting assays were performed to detect the expression of 78-kDa glucose-regulated protein precursor (GRP78) and sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA2a). We cultured neonatal rat cardiomyocytes and investigated the protective effects of EPO against high glucose (HG)-induced apoptosis. Intracellular calcium levels were measured through confocal microscopy.

RESULTS: We observed increased myocardial GRP78 expression and decreased myocardial SERCA2a expression in diabetic rats. EPO prevented the changes in GRP78, SERCA2a expression and cardiac dysfunction in diabetic rats. The levels of GRP78 protein were significantly reduced in EPO-treated diabetic rats compared with vehicle-treated diabetic rats (GRP78 protein 0.09 ± 0.03 vs. 0.54 ± 0.04, P < 0.01). The levels of the SERCA2a proteins were significantly increased in EPO-treated diabetic rats compared with vehicle-treated diabetic rats (SERCA2a protein 0.60 ± 0.05 vs. 0.13 ± 0.04, P < 0.01). A reduction in apoptosis was observed in the cardiomyocytes treated with 20 U/mL EPO compared with the cardiomyocytes cultured under HG conditions (apoptosis rate 18.9 ± 1.94 vs. 37.9 ± 1.59%, P < 0.01).

CONCLUSIONS: This study demonstrates that EPO treatment improved the parameters of cardiac function following HG-induced injury by suppressing ER stress and inducing SERCA2a expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app