JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Does a Treadmill Running Exercise Contribute to Preventing Deterioration of Bone Mineral Density and Bone Quality of the Femur in KK-Ay Mice, a Type 2 Diabetic Animal Model?

Although it has been recently shown that type 2 diabetics have an increased risk of hip fracture, the effects of exercise therapy to prevent this have not been clarified. We examined whether a treadmill running exercise contributes to the bone mineral density (BMD) and bone microarchitecture of the femur and what kind of exercise intensity and duration are optimum in type 2 diabetes mellitus using KK-Ay diabetic mice. The mice were divided into two running groups, one fast speed and short duration (FS), the other slow speed and long duration (SL), and a group of controls with no running (CO). The running exercise was started when the mice were 8 weeks of age, and continued once a day 5 days per week for 10 weeks. Ten weeks after the start of the running exercise, the BMD of the proximal region and mid-diaphysis in the SL were significantly higher in comparison with that in the CO, whereas there was no difference in bone microarchitecture among the three groups. Blood glucose, insulin levels, and visceral fat contents in the SL were significantly lower than those in the CO and FS. Bone resorption protein and C-reactive protein levels in the SL were significantly lower than those in the CO. These results suggest that slow, long duration loading is better for both bone and glycemic control than fast, short duration loading in type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app