Add like
Add dislike
Add to saved papers

Increment of root membrane permeability caused by microcystins result in more elements uptake in rice (Oryza sativa).

We conducted an indoor culture experiment to evaluate the phytotoxic effect of microcystins (MCs) on rice. After a 30day exposure, MCs induced a clear inhibition in rice growth, as well as a disruption of its antioxidant system and lipid peroxidation. We observed an increase in root membrane permeability; the conductivity of the leakage solution of the roots at 50 and 500μgL-1 was significantly increased by 77% and 136%, respectively, compared to the control. Uptake of microelements (Fe, Mn, Cu and Zn) was generally not affected after the 30day exposure to MCs. In contrast, uptake of macroelements, with the exception of K, was stimulated by MCs. Ca content in roots exposed to 500μgL-1 showed the greatest increase, by 47%, compared to the control. We propose the following mechanisms to explain our experimental results: exposure of rice roots to MCs leads to root damage and loss of membrane integrity, resulting in greater permeability and uptake of elements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app