Add like
Add dislike
Add to saved papers

Axial resolution and signal-to-noise ratio in deep-tissue imaging with 1.7-μm high-resolution optical coherence tomography with an ultrabroadband laser source.

We investigated the axial resolution and signal-to-noise ratio (SNR) characteristics in deep-tissue imaging by 1.7-μm optical coherence tomography (OCT) with the axial resolution of 4.3  μm in tissue. Because 1.7-μm OCT requires a light source with a spectral width of more than 300 nm full-width at half maximum to achieve such high resolution, the axial resolution in the tissue might be degraded by spectral distortion and chromatic dispersion mismatching between the sample and reference arms. In addition, degradation of the axial resolution would also lead to reduced SNR. Here, we quantitatively evaluated the degradation of the axial resolution and the resulting decrease in SNR by measuring interference signals through a lipid mixture serving as a turbid tissue phantom with large scattering and absorption coefficients. Although the axial resolution was reduced by a factor of ∼6 after passing through a 2-mm-thick tissue phantom, our result clearly showed that compensation of the dispersion mismatching allowed us to achieve an axial resolution of 4.3  μm in tissue and improve the SNR by ∼5  dB compared with the case where dispersion mismatching was not compensated. This improvement was also confirmed in the observation of a hamster’s cheek pouch in a buffer solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app