Add like
Add dislike
Add to saved papers

From Nodal Chain Semimetal to Weyl Semimetal in HfC.

Based on first-principles calculations and effective model analysis, we propose that the WC-type HfC, in the absence of spin-orbit coupling (SOC), can host a three-dimensional nodal chain semimetal state. Distinguished from the previous material IrF_{4} [T. Bzdusek et al., Nature 538, 75 (2016)], the nodal chain here is protected by mirror reflection symmetries of a simple space group, while in IrF_{4} the nonsymmorphic space group with a glide plane is a necessity. Moreover, in the presence of SOC, the nodal chain in WC-type HfC evolves into Weyl points. In the Brillouin zone, a total of 30 pairs of Weyl points in three types are obtained through the first-principles calculations. Besides, the surface states and the pattern of the surface Fermi arcs connecting these Weyl points are studied, which may be measured by future experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app