EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Reducing Circumduction and Hip Hiking During Hemiparetic Walking Through Targeted Assistance of the Paretic Limb Using a Soft Robotic Exosuit.

OBJECTIVE: The aim of the study was to evaluate the effects on common poststroke gait compensations of a soft wearable robot (exosuit) designed to assist the paretic limb during hemiparetic walking.

DESIGN: A single-session study of eight individuals in the chronic phase of stroke recovery was conducted. Two testing conditions were compared: walking with the exosuit powered versus walking with the exosuit unpowered. Each condition was 8 minutes in duration.

RESULTS: Compared with walking with the exosuit unpowered, walking with the exosuit powered resulted in reductions in hip hiking (27 [6%], P = 0.004) and circumduction (20 [5%], P = 0.004). A relationship between changes in knee flexion and changes in hip hiking was observed (Pearson r = -0.913, P < 0.001). Similarly, multivariate regression revealed that changes in knee flexion (β = -0.912, P = 0.007), but not ankle dorsiflexion (β = -0.194, P = 0.341), independently predicted changes in hip hiking (R = 0.87, F(2, 4) = 13.48, P = 0.017).

CONCLUSIONS: Exosuit assistance of the paretic limb during walking produces immediate changes in the kinematic strategy used to advance the paretic limb. Future work is necessary to determine how exosuit-induced reductions in paretic hip hiking and circumduction during gait training could be leveraged to facilitate more normal walking behavior during unassisted walking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app