Add like
Add dislike
Add to saved papers

Unusual cis-diprotonated forms and fluorescent aggregates of non-peripherally alkoxy-substituted metallophthalocyanines.

Protonation and aggregation of two metallophthalocyanines (zinc and magnesium) non-peripherally substituted with 1,4,7-trioxanonyl moieties were studied by steady-state and time-resolved optical spectroscopy. Both compounds are easily protonated in organic solvents, but the central metal ion strongly affects the character of this process. In particular, the magnesium derivative forms the cis-diprotonated isomer observed for the first time in phthalocyanines, in contrast to its zinc counterpart which forms the typical trans-diprotonated isomer. In addition, studies performed on phthalocyanines substituted with n-butoxy groups at their non-peripheral positions indicated that the formation of the cis-diprotonated forms is a more common feature of alkoxy-substituted magnesium metallophthalocyanines, in contrast to derivatives with other metal ions. The cis-diprotonated forms of the magnesium derivatives are formed at much lower proton concentrations than the trans-diprotonated forms of their zinc counterparts. The cis-isomers were also found to have more advantageous photophysical properties for photoactive applications than the trans-isomers. Aggregation studies of the trioxanonyl phthalocyanines revealed that the magnesium derivative aggregates much more easily in non-coordinating solvents than its zinc counterpart. Both the derivatives form fluorescent aggregates, which is typically attributed to the presence of oxygen-to-metal intermolecular coordination preventing the formation of non-fluorescent face-to-face stacks. The results indicate that the oxygen-to-metal coordination plays a significant role in the studied systems and the stronger oxygen-coordination ability of magnesium ions compared to zinc ions may underlie the observed differences between the phthalocyanines metallated with these two ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app