Add like
Add dislike
Add to saved papers

Jak Inhibitors Modulate Production of Replication-Competent Zika Virus in Human Hofbauer, Trophoblasts, and Neuroblastoma cells.

Zika Virus (ZIKV) is a flavivirus that has been implicated in causing brain deformations, birth defects, and microcephaly in fetuses, and associated with Guillain-Barre syndrome. Mechanisms responsible for transmission of ZIKV across the placenta to the fetus are incompletely understood. Herein, we define key events modulating infection in clinically relevant cells, including primary placental macrophages (human Hofbauer cells; HC), trophoblasts, and neuroblastoma cells. Consistent with previous findings, HC and trophoblasts are permissive to ZIKV infection. Decrease of interferon signaling by Jak ½ inhibition (using ruxolitinib) significantly increased ZIKV replication in HC, trophoblasts, and neuroblasts. Enhanced ZIKV production in ruxolitinib-treated HC was associated with increased expression of HLA-DR and DC-SIGN. Nucleoside analogs blocked ruxolitinib-mediated production of extracellular virus. Although low-level ZIKV infection occurred in untreated HC and trophoblasts, replicating virions were incapable of infecting naive Vero cells. These deficient virions from untreated HC have "thin-coats" suggesting an immature structure. Blocking Jak ½ signaling (with ruxolitinib) restored replication competence as virions produced under these conditions confer cytopathic effects to naive Vero cells. These data demonstrate that Jak-STAT signaling directly impacts the ability of primary placental cells to produce replication-competent virus and is a key determinant in the production of mature virions in clinically relevant cells, including HC and trophoblasts. Design of targeted agents to prevent ZIKV replication in the placenta should consider Jak ½ signaling, the impact of its block on ZIKV infection, and subsequent transmission to the fetus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app