Add like
Add dislike
Add to saved papers

Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan.

Scientific Reports 2017 August 4
It remains challenging to forecast local, seasonal outbreaks of influenza. The goal of this study was to construct a computational model for predicting influenza incidence. We built two computational models including an Autoregressive Distributed Lag (ARDL) model and a hybrid model integrating ARDL with a Generalized Regression Neural Network (GRNN), to assess meteorological factors associated with temporal trends in influenza incidence. The modelling and forecasting performance of these two models were compared using observations collected between 2006 and 2015 in Nagasaki Prefecture, Japan. In both the training and forecasting stages, the hybrid model showed lower error rates, including a lower residual mean square error (RMSE) and mean absolute error (MAE) than the ARDL model. The lag of log-incidence, weekly average barometric pressure, and weekly average of air temperature were 4, 1, and 3, respectively in the ARDL model. The ARDL-GRNN hybrid model can serve as a tool to better understand the characteristics of influenza epidemic, and facilitate their prevention and control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app