Add like
Add dislike
Add to saved papers

miR-15a/16 inhibits TGF-beta3/VEGF signaling and increases retinal endothelial cell barrier proteins.

Vision Research 2017 October
Hyperglycemia is a significant risk factor for diabetic retinopathy and induces multiple biochemical changes, including inflammation and endothelial dysfunction in the retina. Alterations in microRNA expression have been implicated in the pathological responses of diabetic retinopathy and the manipulation of microRNA may provide powerful strategy for therapeutics. Among the predicted targets of miR-15a and -16 are TGF-beta3, SMAD2/3, and VEGF, all of which are known to play a role in vascular endothelial functions. The purpose of this study was to investigate the hypothesis that miR-15a/16 inhibits TGF-beta3/VEGF signaling to maintain retinal endothelial cell barrier protein levels. Human primary retinal endothelial cells (REC) were maintained in normal (5mM) glucose or transferred to high glucose medium (25mM) for 3days. REC were transfected with miRNA mimics (hsa-miR-15a-5p and -16-5p). Retinal lysates from miR-15a-transgenic mice were also analyzed. We demonstrated that overexpression of miR-15a/16 resulted in decreased TGF-beta3 signaling and VEGF levels in cultured REC grown in high glucose conditions. In addition, the levels of tight junction proteins, zonula occludens-1 (ZO-1) and occludin, were elevated in REC following overexpression of miR-15a and -16. Overexpression of miR-15a and -16 played a role in reducing cellular permeability through inhibition of VEGF signaling in REC cultured under high glucose conditions. Using miR-15a-transgenic mice, we demonstrated the regulatory role of miR-15a on TGF-beta3 signaling and tight junction proteins in vivo. Our outcomes suggest that miR-15a/16 maintain the retinal endothelial cell barrier by reducing TGFbeta3/VEGF signaling and increasing levels of key tight junction proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app