Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Anatomic Targeting of the Optimal Location for Thalamic Deep Brain Stimulation in Patients with Essential Tremor.

World Neurosurgery 2017 November
BACKGROUND: Thalamic deep brain stimulation (DBS) is an effective strategy for treatment of essential tremor (ET). With limitations of imaging modalities, targeting largely relies on indirect methods. This study was designed to determine the optimal target for DBS in ET and construct a targeting method based on probabilistic maps.

METHODS: Patients with ET who had sustained tremor reduction at 1 year and optimal microelectrode recordings were selected. Stimulation volume was individually modeled in standard space, and a final optimal region was derived for the whole population. A fornix (FX) targeting method was developed to determine the location of the optimal stimulation site relative to the FX and posterior commissure (PC) in the anteroposterior plane, the border between the thalamus and internal capsule in the mediolateral plane, and the anterior commissure (AC)-PC (AC-PC) plane in the dorsoventral axis. Following comparative analyses with other standard indirect methods (25% of AC-PC and PC + 6 mm), the FX method was studied in relation to diffusion tensor imaging.

RESULTS: Using the FX method, the optimal stimulation site was at the intersection of two thirds and one third of the PC-FX distance (mean of 28% ± 1.5 AC-PC length) and 4 mm medial to the lateral border of the thalamus. Compared with previously used methods, there was a significant reduction in variability of the optimal stimulation site with the FX method. The target defined using this strategy was found to be within the boundaries of the dentatorubrothalamic tract.

CONCLUSIONS: The FX method may be an additional targeting strategy in patients undergoing thalamic DBS surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app