Add like
Add dislike
Add to saved papers

Method to assess component contribution to toxicity of complex mixtures: Assessment of puberty acquisition in rats exposed to disinfection byproducts.

A method based on regression modeling was developed to discern the contribution of component chemicals to the toxicity of highly complex, environmentally realistic mixtures of disinfection byproducts (DBPs). Chemical disinfection of drinking water forms DBP mixtures. Because of concerns about possible reproductive and developmental toxicity, a whole mixture (WM) of DBPs produced by chlorination of a water concentrate was administered as drinking water to Sprague-Dawley (S-D) rats in a multigenerational study. Age of puberty acquisition, i.e., preputial separation (PPS) and vaginal opening (VO), was examined in male and female offspring, respectively. When compared to controls, a slight, but statistically significant delay in puberty acquisition was observed in females but not in males. WM-induced differences in the age at puberty acquisition were compared to those reported in S-D rats administered either a defined mixture (DM) of nine regulated DBPs or individual DBPs. Regression models were developed using individual animal data on age at PPS or VO from the DM study. Puberty acquisition data reported in the WM and individual DBP studies were then compared with the DM models. The delay in puberty acquisition observed in the WM-treated female rats could not be distinguished from delays predicted by the DM regression model, suggesting that the nine regulated DBPs in the DM might account for much of the delay observed in the WM. This method is applicable to mixtures of other types of chemicals and other endpoints.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app