Add like
Add dislike
Add to saved papers

Origin of Activity and Stability Enhancement for Ag₃PO₄ Photocatalyst after Calcination.

Materials 2016 November 30
Pristine Ag₃PO₄ microspheres were synthesized by a co-precipitation method, followed by being calcined at different temperatures to obtain a series of calcined Ag₃PO₄ photocatalysts. This work aims to investigate the origin of activity and stability enhancement for Ag₃PO₄ photocatalyst after calcination based on the systematical analyses of the structures, morphologies, chemical states of elements, oxygen defects, optical absorption properties, separation and transfer of photogenerated electron-hole pairs, and active species. The results indicate that oxygen vacancies (VO˙˙) are created and metallic silver nanoparticles (Ag NPs) are formed by the reaction of partial Ag⁺ in Ag₃PO₄ semiconductor with the thermally excited electrons from Ag₃PO₄ and then deposited on the surface of Ag₃PO₄ microspheres during the calcination process. Among the calcined Ag₃PO₄ samples, the Ag₃PO₄-200 sample exhibits the best photocatalytic activity and greatly enhanced photocatalytic stability for photodegradation of methylene blue (MB) solution under visible light irradiation. Oxygen vacancies play a significantly positive role in the enhancement of photocatalytic activity, while metallic Ag has a very important effect on improving the photocatalytic stability. Overall, the present work provides some powerful evidences and a deep understanding on the origin of activity and stability enhancement for the Ag₃PO₄ photocatalyst after calcination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app