Add like
Add dislike
Add to saved papers

Synthesis and Characterization of N-Doped Porous TiO₂ Hollow Spheres and Their Photocatalytic and Optical Properties.

Materials 2016 October 20
Three kinds of N-doped mesoporous TiO₂ hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol-gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core-shell intermediate spheres of titania-coated MF with diameters of 1.2-1.6 μm were fabricated by varying the volume concentration of TiO₂ precursor from 1 to 3 vol %. By calcining the core-shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO₂ hollow spheres with sizes in the range of 0.4-1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO₂ hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption-desorption, and UV-vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO₂ hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO₂ matrices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app