Add like
Add dislike
Add to saved papers

Biomechanical Loading Evaluation of Unsintered Hydroxyapatite/poly-l-lactide Plate System in Bilateral Sagittal Split Ramus Osteotomy.

Materials 2017 July 8
OSTEOTRANS MX(®) (Takiron Co., Ltd., Osaka, Japan) is a bioactive resorbable maxillofacial osteosynthetic material composed of an unsintered hydroxyapatite/poly-l-lactide composite, and its effective osteoconductive capacity has been previously documented. However, the mechanical strength of this plate system is unclear. Thus, the aim of this in vitro study was to assess its tensile and shear strength and evaluate the biomechanical intensity of different osteosynthesis plate designs after sagittal split ramus osteotomy by simulating masticatory forces in a clinical setting. For tensile and shear strength analyses, three mechanical strength measurement samples were prepared by fixing unsintered hydroxyapatite/poly-l-lactide composed plates to polycarbonate skeletal models. Regarding biomechanical loading evaluation, 12 mandibular replicas were used and divided into four groups for sagittal split ramus osteotomy fixation. Each sample was secured in a jig and subjected to vertical load on the first molar teeth. Regarding shear strength, the novel-shaped unsintered hydroxyapatite/poly-l-lactide plate had significantly high intensity. Upon biomechanical loading evaluation, this plate system also displayed significantly high stability in addition to bioactivity, with no observed plate fracture. Thus, we have clearly demonstrated the efficacy of this plate system using an in vitro model of bilateral sagittal split ramus osteotomy of the mandible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app