Add like
Add dislike
Add to saved papers

Corrosion Behavior of Silver-Plated Circuit Boards in a Simulated Marine Environment with Industrial Pollution.

Materials 2017 July 7
The electrochemical corrosion behavior of a silver-plated circuit board (PCB-ImAg) in a polluted marine atmosphere environment (Qingdao in China) is studied through a simulated experiment. The morphologies of PCB-ImAg show some micropores on the surface that act as the corrosion-active points in the tests. Cl(-) mainly induces microporous corrosion, whereas SO₂ causes general corrosion. Notably, the silver color changes significantly under SO₂ influence. EIS results show that the initial charge transfer resistance in the test containing SO₂ and Cl(-) is 9.847 × 10³, while it is 3.701 × 10⁴ in the test containing Cl(-) only, which demonstrates that corrosion accelerates in a mixed atmosphere. Polarization curves further show that corrosion potential is lower in mixed solutions (between -0.397 V SCE and -0.214 V SCE) than it in the solution containing Cl(-) only (-0.168 V SCE), indicating that corrosion tendency increases with increased HSO₃(-) concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app