Add like
Add dislike
Add to saved papers

Synthesis of Au NP@MoS₂ Quantum Dots Core@Shell Nanocomposites for SERS Bio-Analysis and Label-Free Bio-Imaging.

Materials 2017 June 14
In this work, we report a facile method using MoS₂ quantum dots (QDs) as reducers to directly react with HAuCl₄ for the synthesis of Au nanoparticle@MoS₂ quantum dots (Au NP@MoS₂ QDs) core@shell nanocomposites with an ultrathin shell of ca. 1 nm. The prepared Au NP@MoS₂ QDs reveal high surface enhanced Raman scattering (SERS) performance regarding sensitivity as well as the satisfactory SERS reproducibility and stability. The limit of detection of the hybrids for crystal violet can reach 0.5 nM with a reasonable linear response range from 0.5 μM to 0.5 nM (R² ≈ 0.974). Furthermore, the near-infrared SERS detection based on Au NP@MoS₂ QDs in living cells is achieved with distinct Raman signals which are clearly assigned to the various cellular components. Meanwhile, the distinguishable SERS images are acquired from the 4T1 cells with the incubation of Au NP@MoS₂ QDs. Consequently, the straightforward strategy of using Au NP@MoS₂ QDs exhibits great potential as a superior SERS substrate for chemical and biological detection as well as bio-imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app