Add like
Add dislike
Add to saved papers

Surface Modification of Multi-Walled Carbon Nanotubes via Hemoglobin-Derived Iron and Nitrogen-Rich Carbon Nanolayers for the Electrocatalysis of Oxygen Reduction.

Materials 2017 May 21
The great challenge of boosting the oxygen reduction reaction (ORR) activity of non-noble-metal electrocatalysts is how to achieve effective exposure and full utilization of nitrogen-rich active sites. To realize the goals of high utilization of active sites and fast electron transport, here we report a new strategy for synthesis of an iron and nitrogen co-doped carbon nanolayers-wrapped multi-walled carbon nanotubes as ORR electrocatalyst (N-C@CNT-Fe) via using partially carbonized hemoglobin as a single-source precursor. The onset and half-wave potentials for ORR of N-C@CNT-Fe are only 45 and 54 mV lower than those on a commercial Pt/C (20 wt.% Pt) catalyst, respectively. Besides, this catalyst prepared in this work has been confirmed to follow a four-electron reaction mechanism in ORR process, and also displays ultra-high electrochemical cycling stability in both acidic and alkaline electrolytes. The enhancement of ORR activity can be not only attributed to full exposure and utilization of active site structures, but also can be resulted from the improvement of electrical conductivity owing to the introduction of CNT support. The analysis of X-ray photoelectric spectroscopy shows that both Fe-N and graphitic-N species may be the ORR active site structures of the prepared catalyst. Our study can provide a valuable idea for effective improvement of the electrocatalytic activity of non-noble-metal ORR catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app