Add like
Add dislike
Add to saved papers

A Novel Silicon Allotrope in the Monoclinic Phase.

Materials 2017 April 23
This paper describes a new silicon allotrope in the P2/m space group found by first-principles calculations using the Cambridge Serial Total Energy Package (CASTEP) plane-wave code. The examined P2/m-Si belongs to the monoclinic crystal system. P2/m-Si is an indirect band-gap semiconductor with a band gap of 1.51 eV, as determined using the HSE06 hybrid functional. The elastic constants, phonon spectra and enthalpy indicate that P2/m-Si is mechanically, dynamically, and thermodynamically stable. P2/m-Si is a low-density (2.19 g/cm³) silicon allotrope. The value of B/G is less than 1.75, which indicates that the new allotrope is brittle. It is shown that the difference in the elastic anisotropy along different orientations is greater than that in other phases. Finally, to understand the thermodynamic properties of P2/m-Si, the thermal expansion coefficient α, the Debye temperature ΘD, and the heat capacities CP and CV are also investigated in detail.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app