Add like
Add dislike
Add to saved papers

Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method.

Materials 2017 April 13
The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app