JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Noninvasive Substitution of K + Sites in Cyclodextrin Metal-Organic Frameworks by Li + Ions.

Co-crystallization of K+ and Li+ ions with γ-cyclodextrin (γ-CD) has been shown to substitute the K+ ion sites partially by Li+ ions, while retaining the structural integrity and accessible porosity of CD-MOF-1 (MOF, metal-organic framework). A series of experiments, in which the K+ /Li+ ratio was varied with respect to that of γ-CD, have been conducted in order to achieve the highest possible proportion of Li+ ions in the framework. Attempts to obtain a CD-MOF containing only Li+ ions resulted in nonporous materials. The structural occupancy on the part of the Li+ ions in the new CD-MOF has been confirmed by single-crystal X-ray analysis by determining the vacancies of K+ -ion sites and accounting for the cation/γ-CD ratio in CD-MOF-1. The proportion of Li+ ions has also been confirmed by elemental analysis, whereas powder X-ray diffraction has established the stability of the extended framework. This noninvasive synthetic approach to generating mixed-metal CD-MOFs is a promising method for obtaining porous framework unattainable de novo. Furthermore, the CO2 and H2 capture capacities of the Li+ -ion-substituted CD-MOF have been shown to exceed the highest sorption capacities reported so far for CD-MOFs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app