Add like
Add dislike
Add to saved papers

Reduced Cerebral White Matter Integrity Assessed by DTI in Cognitively Normal H63D-HFE Polymorphism Carriers.

BACKGROUND AND PURPOSE: The H63D-HFE single nucleotide polymorphism (SNP) has been associated with brain iron dysregulation; however, the emergent role of this missense variant in brain structure and function has yet to be determined. Previous work has demonstrated that HFE SNP carriers have reduced white matter magnetic resonance imaging (MRI) proton relaxation rates. The mechanism by which white matter alterations perturb MRI relaxation is unknown as is how these metrics are related to myelin integrity.

METHODS: Fifteen subjects heterozygous for the HFE-H63D SNP and 25 controls with wild-type HFE had diffusion-weighted, anatomical MRIs taken, and underwent cognitive assessment. Fractional anisotropy (FA), mean diffusion (MD), and mode of anisotropy (MO) were calculated from the diffusion dataset to investigate the relationship between the H63D-HFE SNP and myelin integrity.

RESULTS: A decrease in FA, an increase in MD, and an increase in MO are demonstrated in multiple H63D-HFE polymorphism carrier white matter tracts. Regions with altered diffusion metrics are notably located in heavily myelinated white matter association fibers, such as the anterior corona radiata and longitudinal fasciculi.

CONCLUSIONS: The MRI data presented here demonstrate that H63D-HFE polymorphism carriers have diffusivity changes in white matter compared to wild-type subjects. The reduced integrity white matter tracts in H63D-HFE carriers are hypothesized to be related to increased susceptibility of these late-myelinating regions to cellular stress induced by oligodendrocyte iron dyshomeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app