Add like
Add dislike
Add to saved papers

Amorphous Transition Metal Sulfides Anchored on Amorphous Carbon-Coated Multiwalled Carbon Nanotubes for Enhanced Lithium-Ion Storage.

Cobalt sulfide and molybdenum sulfide, with high theoretical capacities, have been considered as one of most promising anode materials for lithium-ion batteries (LIBs). However, the poor cyclability and low rate performances originating from the large volume expansion and poor electrical conductivity extremely inhibit their practical application. Here, the electrochemical performances are effectively improved by growing amorphous cobalt sulfide and molybdenum sulfide onto amorphous carbon-coated multiwalled carbon nanotubes (CNTs@C@CoS2 and CNTs@C@MoS2 ). The CNTs@C@CoS2 presents a high reversible specific capacity of 1252 mAh g-1 at 0.2 Ag-1 , excellent rate performance of 672 mAh g-1 (5 Ag-1 ), and enhanced cycle life of 598 mAh g-1 after 500 cycles at 2 Ag-1 . For CNTs@C@MoS2 , it exhibits a specific capacity of 1395 mAh g-1 , superior rate performance of 727 mAh g-1 at 5 Ag-1 , and long cycle stability (796 mAh g-1 after 500 cycles at 2 Ag-1 ). The enhanced electrochemical properties of the electrodes are probably ascribed to their amorphous nature, the combination of CNTs@C that adhered and hindered the agglomeration of CoS2 and MoS2 as well as the enhanced electronic conductivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app