JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

α-Ketoglutarate drives electroneutral NaCl reabsorption in intercalated cells by activating a G-protein coupled receptor, Oxgr1.

PURPOSE OF REVIEW: This review describes the recent discoveries about a powerful electroneutral NaCl reabsorption mechanism in intercalated cells, and its regulation by an intrarenal metabolite paracrine, α-ketoglutartate, and the G-protein coupled receptor, Oxgr1.

RECENT FINDINGS: The distal nephron fine-tunes sodium, chloride, potassium, hydrogen, bicarbonate and water transport to maintain electrolyte homeostasis and blood pressure. Intercalated cells have been traditionally viewed as the professional regulators of acid-base balance, but recent studies reveal that a specific population of intercalated cells, identified by the pendrin-transporter, have a surprising role in the regulation of salt balance. The pendrin-positive intercalated cells (PP-ICs) facilitate electroneutral NaCl reabsorption through the cooperative activation of multitransport protein network. α-Ketoglutartate is synthesized and secreted into the proximal tubule lumen in the combined state of metabolic alkalosis and intravascular volume contraction to activate Oxgr1 in PP-IC, which in turn activates the multitransport protein network to drive salt reabsorption and bicarbonate secretion by these cells.

SUMMARY: Recent studies identify a novel salt transport pathway in intercalated cells that is activated by an intrarenal paracrine system, α-ketoglutartate/Oxgr1. Activation of the paracrine system and transport pathway, particularly during alkalosis and volume contraction, mitigates deleterious salt wasting while restoring acid-base balance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app