Add like
Add dislike
Add to saved papers

Preparation and Evaluation of Dexamethasone (DEX)/Growth and Differentiation Factor-5 (GDF-5) Surface-Modified Titanium Using β-Cyclodextrin-Conjugated Heparin (CD-Hep) for Enhanced Osteogenic Activity In Vitro and In Vivo.

The most ideal implant models in the dental and orthopedic fields to minimize the failure rate of implantation involve the improvement of osseointegration with host bone. Therefore, a focus of this study is the preparation of surface-modified titanium (Ti) samples of disc and screw types using dexamethasone (DEX) and/or growth and differentiation factor-5 (GDF-5), as well as the evaluation of their efficacies on bone formation in vitro and in vivo. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle measurement were used to evaluate the surface chemical composition, surface morphology and wettability, respectively. The results showed that implant surfaces were successfully modified with DEX and/or GDF-5, and had rough surfaces along with hydrophilicity. DEX, GDF-5 or DEX/GDF-5 on the surface-modified samples were rapidly released within one day and released for 28 days in a sustained manner. The proliferation and bone formation of MC3T3-E1 cells cultured on pristine and surface-modified implants in vitro were examined by cell counting kit-8 (CCK-8) assay, as well as the measurements of alkaline phosphatase (ALP) activity and calcium deposition, respectively. MC3T3-E1 cells cultured on DEX/GDF-5-Ti showed noticeable ALP activity and calcium deposition in vitro. Active bone formation and strong osseointegration occurred at the interface between DEX/GDF-5-Ti and host bone, as evaluated by micro computed-tomography (micro CT) analysis. Surface modification using DEX/GDF-5 could be a good method for advanced implants for orthopaedic and dental applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app