Add like
Add dislike
Add to saved papers

High performance asymmetric V 2 O 5 -SnO 2 nanopore battery by atomic layer deposition.

Nanoscale 2017 August 18
Here we report the high performance and cyclability of an asymmetric full cell nanopore battery, comprised of V2 O5 as the cathode and prelithiated SnO2 as the anode, with integrated nanotubular Pt current collectors underneath each nanotubular storage electrode, confined within an anodized aluminium oxide (AAO) nanopore. Enabled by atomic layer deposition (ALD), this coaxial nanotube full cell is fully confined within a high aspect ratio nanopore (150 nm in diameter, 50 μm in length), with an ultra-small volume of about 1 fL. By controlling the amount of lithium ion prelithiated into the SnO2 anode, we can tune the full cell output voltage in the range of 0.3 V to 3 V. When tested as a massively parallel device (∼2 billion cm-2 ), this asymmetric nanopore battery array displays exceptional rate performance and cyclability: when cycled between 1 V and 3 V, capacity retention at the 200C rate is ∼73% of that at 1C, and at 25C rate only 2% capacity loss occurs after more than 500 charge/discharge cycles. With the increased full cell output potential, the asymmetric V2 O5 -SnO2 nanopore battery shows significantly improved energy and power density over the previously reported symmetric cell, 4.6 times higher volumetric energy and 5.2 times higher power density - an even more promising indication that controlled nanostructure designs employing nanoconfined environments with large electrode surface areas present promising directions for future battery technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app