Add like
Add dislike
Add to saved papers

Insights into the Giardia intestinalis enolase and human plasminogen interaction.

Molecular BioSystems 2017 September 27
Giardia intestinalis is an intestinal parasite that causes diarrhea in humans and animals worldwide. The enolase of G. intestinalis (GiENO) participates in its glycolysis pathway and is abundantly expressed in the parasite cytosol; however, its localization on the surface of trophozoites and cysts has been demonstrated. Enolases from bacteria and parasites can have different functions and are considered moonlighting proteins, for example, as a cell surface plasminogen receptor. In relation to GiENO, no studies have been performed about its possible participation as a plasminogen receptor. In this work, we employed molecular docking and multiscale molecular dynamics (MD) simulations to explore the possible interactions of human plasminogen (HsPLG) with the open and closed GiENO conformations. Our proposed GiENO plasminogen binding site (PLGBs) was identified at Lys266 based on the sequence comparison with bacterial enolase known to act as a plasminogen receptor. Our docking results performed with multiple MD snapshots of the closed GiENO conformation showed that Lys266 preferentially binds to the K5 domain of HsPLG. On the other hand, open GiENO conformations from all-atom and coarse-grained simulations indicated a high preference of the HsPLG K4 domain for lysine residues 186 and 188. Furthermore, we identified a potential N-glycosylation site of GiENO which suggests a possible explanation for the parasite cell surface localization or host mucin oligosaccharide adhesion mechanism. Our study constitutes the first multiscale computational study to explore the plasminogen receptor function of GiENO for its further consideration as a potential therapeutic target for giardiasis treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app