Add like
Add dislike
Add to saved papers

Influence of the asymmetric excited state decay on coherent population trapping.

Scientific Reports 2017 August 3
Electromagnetically induced transparency (EIT) is an optical phenomenon which allows a drastic modification of the optical properties of an atomic system by applying a control field. It has been largely studied in the last decades and nowadays we can find a huge number of experimental and theoretical related studies. Recently a similar phenomenon was also shown in quantum dot molecules (QDM), where the control field is replaced by the tunneling rate between quantum dots. Our results show that in the EIT regime, the optical properties of QDM and the atomic system are identical. However, here we show that in the strong probe field regime, i.e., "coherent population trapping" (CPT) regime, it appears a strong discrepancy on the optical properties of both systems. We show that the origin of such difference relies on the different decay rates of the excited state of the two systems, implying in a strong difference on their higher order nonlinear susceptibilities. Finally, we investigate the optical response of atom/QDM strongly coupled to a cavity mode. In particular, the QDM-cavity system has the advantage of allowing a better narrowing of the width of the dark state resonance in the CPT regime when compared with atom-cavity system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app