Add like
Add dislike
Add to saved papers

Pharmacokinetic/Pharmacodynamic Analysis for Doripenem Regimens in Intensive Care Unit Patient.

Doripenem (DRPM) is a broad-spectrum antibacterial agent often used as empirical therapy for critically ill patients, although there is a lack of studies validating the recommended dosage regimen for patients admitted to intensive care unit (ICU), based on pharmacokinetic (PK)/pharmacodynamic (PD) index. In this study, we estimated the free time above minimum inhibitory concentration (fT>MIC (%)) of DRPM using population PK analysis of 12 patients in ICU, and evaluated the validity of the dosage regimen stratified by creatinine clearance. Using a 2-compartment population PK model reported previously, the mean total clearance or distribution volume of DRPM estimated by Bayesian estimation was significantly lower or higher than that of based on population PK model. The estimated fT>MIC (%) of the recommended standard (normal renal function: 0.5 g every 8 h, moderate: 0.25 g every 8 h, severe renal impairment: 0.25 g every 12 h) and higher doses (normal: 1.0 g every 8 h, moderate: 0.5 g every 8 h, severe: 0.25 g every 8 h) against MICs of 0.5, 1 and 2 µg/mL exceeded 40% in all patients. When stratified by creatinine clearance, the PK/PD breakpoints estimated by Monte Carlo simulation in three grades of renal function tended to be higher than the previously reported PK/PD breakpoints for patients with urinary tract infection, an infection of lesser severity than ICU patients. These results suggest that the dosage regimen stratified by renal function derived from Japanese package insert may be sufficient to achieve effective treatment in ICU patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app