Add like
Add dislike
Add to saved papers

Characterization of Membrane Integrity and Morphological Stability of Human Salivary Exosomes.

Exosomes are derived from various sources, including primary and cultured cell lines and body fluids. It is now evident that they are important for communication between cells. They have, therefore, been proposed as potential carriers to deliver drugs to specific sites. In this study, we examined stability of exosomes derived from human saliva. Exosomes were stored at 4°C for up to 20 months and their membrane integrity assessed. Several exosomal markers, such as dipeptidyl peptidase IV (DPP IV; membrane marker) and programmed cell death 6-interacting protein (Alix, lumen marker), were retained intact after 20 months storage at 4°C. Moreover, intact exosomes could be isolated from whole saliva that had been stored at 4°C. Membrane disruption with detergents such as Triton X-100 and Nonidet P-40 caused partial solubilization of DPP IV and release of Alix into the supernatant. In contrast, sodium dodecyl sulfate treatment caused a complete disruption of the membrane. In addition, membrane stability was maintained after freezing and thawing. These results indicated that human saliva-derived exosomes are stable, maintaining their membrane integrity over a long storage period.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app