JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

S -Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice.

Journal of Nutrition 2017 September
Background: S -equol, which is enantioselectively produced from daidzein by gut microbiota, has been suggested as a chemopreventive agent against type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear. Objective: We investigated the effects of S -equol on pancreatic β-cell function. Methods: β-Cell growth and insulin secretion were evaluated with male Institute of Cancer Research mice and isolated pancreatic islets from the mice, respectively. The mechanisms by which S -equol stimulated β-cell response were examined in INS-1 β-cells. The effect of S -equol treatment on β-cell function was assessed in low-dose streptozotocin-treated mice. S -equol was used at 10 μmol/L for in vitro and ex vivo studies and was administered by oral gavage (20 mg/kg, 2 times/d throughout the experimental period) for in vivo studies. Results: S -equol administration for 7 d increased Ki67-positive β-cells by 27% ( P < 0.01) in mice. S -equol enantioselectively enhanced glucose-stimulated insulin secretion in mouse pancreatic islets by 41% ( P < 0.001). In INS-1 cells, S -equol exerted stronger effects than daidzein on cell growth, insulin secretion, and cAMP-response element (CRE)-mediated transcription. These S -equol effects were diminished by inhibiting protein kinase A. The effective concentration of S -equol for stimulating cAMP production at the plasma membrane was lower than that for phosphodiesterase inhibition. S -equol-stimulated CRE activation was negatively controlled by the knockdown of G-protein α subunit group S (stimulatory) and positively controlled by that of G-protein-coupled receptor kinase-3 and -6. Compared with vehicle-treated controls, S -equol gavage treatment resulted in an increase in β-cell mass of 104% ( P < 0.05), a trend toward high plasma insulin concentrations (by 118%; P = 0.06), and resistance to hyperglycemia after streptozotocin treatment (78% of AUC after glucose challenge; P < 0.01). S -equol administration significantly increased the number of Ki67-positive proliferating β-cells by 62% ( P < 0.01) and decreased that of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic β-cells by 75% ( P < 0.05). Conclusions: Our results show that S -equol boosts β-cell function and prevents hypoglycemia in mice, suggesting its potential for T2DM prevention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app