Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Regulation of the epithelial Na + channel by paraoxonase-2.

Paraoxonase-2 (PON-2) is a membrane-bound lactonase with unique anti-oxidative and anti-atherosclerotic properties. PON-2 shares key structural elements with MEC-6, an endoplasmic reticulum-resident molecular chaperone in Caenorhabditis elegans MEC-6 modulates the expression of a mechanotransductive ion channel comprising MEC-4 and MEC-10 in touch-receptor neurons. Because pon-2 mRNA resides in multiple rat nephron segments, including the aldosterone-sensitive distal nephron where the epithelial Na+ channel (ENaC) is expressed, we hypothesized that PON-2 would similarly regulate ENaC expression. We observed PON-2 expression in aquaporin 2-positive principal cells of the distal nephron of adult human kidney. PON-2 also co-immunoprecipitated with ENaC when co-expressed in HEK293 cells. When PON-2 was co-expressed with ENaC in Xenopus oocytes, ENaC activity was reduced, reflecting a reduction in ENaC surface expression. MEC-6 also reduced ENaC activity when co-expressed in Xenopus oocytes. The PON-2 inhibitory effect was ENaC-specific, as PON-2 had no effect on functional expression of the renal outer medullary potassium channel. PON-2 did not alter the response of ENaC to extracellular Na+ , mechanical shear stress, or α-chymotrypsin-mediated proteolysis, suggesting that PON-2 did not alter the regulation of ENaC by these factors. Together, our data suggest that PON-2 regulates ENaC activity by modulating its intracellular trafficking and surface expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app