Add like
Add dislike
Add to saved papers

Respiratory Mechanical and Cardiorespiratory Consequences of Cycling with Aerobars.

PURPOSE: Aerobars place a cyclist in a position where the trunk is flexed forward and the elbows are close to the midline of the body. This position is known to improve cycling aerodynamics and time trial race performance compared with upright cycling positions. However, the aggressive nature of this position may have important cardiorespiratory and metabolic consequences. The purpose of this investigation was to examine the respiratory mechanical, ventilatory, metabolic, and sensory consequences of cycling while using aerobars during laboratory-based cycling.

METHODS: Eleven endurance-trained male cyclists (age, 26 ± 9 yr; V˙O2peak, 55 ± 5 mL·kg·min) were recruited. Visit 1 consisted of an incremental cycling test to determine peak power output. Visit 2 consisted of 6-min bouts of constant load cycling at 70% of peak incremental power output in the aerobar position, drop position, and upright position while grasping the brake hoods. Metabolic and ventilatory responses were measured using a commercially available metabolic cart, and respiratory pressures were measured using an esophageal catheter.

RESULTS: Cycling in the aerobar position significantly increased the work of breathing (Wb), power of breathing (Pb), minute ventilation, ventilatory equivalent for oxygen and carbon dioxide, and transdiaphragmatic pressure compared with the upright position. Increases in the Wb and Pb in the aerobars relative to the upright position were strongly correlated with the degree of thoracic restriction, measured as the shoulder-to-aerobar width ratio (Wb: r = 0.80, P = 0.01; Pb: r = 0.69, P = 0.04).

CONCLUSIONS: Aerobars significantly increase the mechanical cost of breathing and leads to greater ventilatory inefficiency compared with upright cycling. Future work is needed to optimize aerobar width to minimize the respiratory mechanical consequences while optimizing aerodynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app