Add like
Add dislike
Add to saved papers

Mussel-Inspired Architecture of High-Flux Loose Nanofiltration Membrane Functionalized with Antibacterial Reduced Graphene Oxide-Copper Nanocomposites.

Graphene-based nanocomposites have a vast potential for wide-ranging antibacterial applications due to the inherently strong biocidal activity and versatile compatibility of such nanocomposites. Therefore, graphene-based functional nanomaterials can introduce enhanced antibiofouling and antimicrobial properties to polymeric membrane surfaces. In this study, reduced graphene oxide-copper (rGOC) nanocomposites were synthesized as newly robust biocides via in situ reduction. Inspired by the emerging method of bridging ultrafiltration membrane surface cavities, loose nanofiltration (NF) membranes were designed using a rapid (2 h) bioinspired strategy in which rGOC nanocomposites were firmly codeposited with polydopamine (PDA) onto an ultrafiltration support. A series of analyses (SEM, EDS, XRD, XPS, TEM, and AFM) confirmed the successful synthesis of the rGO-Cu nanocomposites. The secure loading of rGOC composites onto the membrane surfaces was also confirmed by SEM and AFM images. Water contact angle results display a high surface hydrophilicity of the modified membranes. The PDA-rGOC functionalization layer facilitated a high water permeability (22.8 L m-2 h-1 bar-1 ). The PDA-rGOC modification additionally furnished the membrane with superior separation properties advantageous for various NF applications such as dye purification or desalination, as ultrahigh (99.4% for 0.5 g L-1 reactive blue 2) dye retention and high salt permeation (7.4% for 1.0 g L-1 Na2 SO4 , 2.5% for 1.0 g L-1 NaCl) was achieved by the PDA-rGOC-modified membranes. Furthermore, after 3 h of contact with Escherichia coli (E. coli) bacteria, the rGOC-functionalized membranes exhibited a strong antibacterial performance with a 97.9% reduction in the number of live E. coli. This study highlights the use of rGOC composites for devising loose NF membranes with strong antibacterial and separation performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app