Add like
Add dislike
Add to saved papers

The structure of liquid alkali nitrates and nitrites.

High energy X-ray diffraction has been combined with containerless techniques to determine the structure of a series of alkali and ammonium nitrate and nitrite liquids. The systems have been modelled using molecular dynamics simulation which allows for the flexibility of, and movement of charge within, the molecular anions. The model reproduces the experimentally-determined scattering functions in both the low- and high-Q regimes reflecting the inter- and intra-molecular length-scales. For ammonium nitrate the best fit to the diffraction data is obtained by assuming the NH4 + cation to have a radius closer to that for Cs+ rather than a smaller cation such as Rb+ as often previously assumed. The alkali nitrites show an emergent length scale, attributed to the nitrogen-nitrogen spatial correlations, that depends on both temperature and the identity of the alkali cation. The corresponding nitrates show a more subtle effect in the nitrogen-nitrogen correlations. As a result, the nature of this N-N length-scale appears different for the respective nitrites and nitrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app