Add like
Add dislike
Add to saved papers

A Cell-Based High-Throughput Method for Identifying Modulators of Alternative Splicing.

Alternative splicing, a key regulatory process of gene expression, is controlled by trans-acting factors that recognize cis-elements in premature RNA transcripts to affect spliceosome assembly and splice site choices. Extracellular stimuli and signaling cascades can converge on RNA binding splicing regulators to affect alternative splicing. Defects in splicing regulation have been associated with various human diseases, and modification of disease-causing splicing events presents great therapeutic promise. Determining splicing regulators and/or upstream modulators has been difficult with low throughput, low sensitivity, and low specificity. IRAS (identifying regulators of alternative splicing) is a novel cell-based high-throughput screening strategy designed specifically to address these challenges and has achieved high throughput, high sensitivity, and high specificity. Here, we describe the IRAS method in detail with a pair of dual-fluorescence minigene reporters that produces GFP and RFP fluorescent signals to assay the two spliced isoforms exclusively. These two complementary mini-gene reporters alter GFP/RFP output ratios in the opposite direction in response to only a true splicing change. False positives from a signal screen do not stimulate opposite changes in GFP/RFP ratios. The reporter pair in conjunction with robotic liquid handlers and arrayed libraries allows IRAS to screen for both positive and negative splicing regulators with high sensitivity and specificity in a high-throughput manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app