Add like
Add dislike
Add to saved papers

Using RNA-Seq to Discover Genetic Polymorphisms That Produce Hidden Splice Variants.

RNA-seq is a powerful and popular technology for studying posttranscriptional regulation of gene expression, such as alternative splicing. The first step in analyzing RNA-seq data is to map the sequenced reads back to the genome. However, commonly used RNA-seq aligners use the consensus splice site dinucleotide motifs to map reads across splice junctions. This can be deceiving due to genomic variants that create novel splice site dinucleotides, leaving the personal splice junction reads un-mapped to the reference genome. We developed and evaluated a method called RNA Personal Genome Alignment Analyzer (rPGA) to identify "hidden" splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app