Add like
Add dislike
Add to saved papers

Allogeneic yet major histocompatibility complex-matched bone marrow transplantation in mice results in an impairment of osteoblasts and a significantly reduced trabecular bone.

Secondary osteopenia following allogeneic bone marrow or stem cell transplantation (BMT or HSCT) is a significant source of morbidity in patients. It is believed to be caused by a number of factors related to the myeloablative conditioning and subsequent therapy regimen. We here aimed to investigate whether the allogeneic bone marrow by itself directly impacts on the bone mass of the patient. We thus performed syn- and allogeneic BMT between two inbred mouse strains, which share an identical major histocompatibility complex background yet differ in their bone phenotypes. BMT was well tolerated, yielded survival rates of 97% and allowed for a regular physiological development. However, allogeneic BMT led to a significant reduction of trabecular bone mass that was independent of strain, sex, immunosuppressive medication, complications resulting from graft versus host disease, underlying bone phenotype and numbers of osteoclasts. Instead, reduced trabecular bone mass correlated with reduced plasma levels of amino-terminal propeptide of type I collagen. Our results suggest that osteopenia following allogeneic BMT is significantly influenced by an impaired osteoblast activity that may stem from a lack of communication between the resident osteoblasts and an allogeneic bone marrow-derived cell type. Elucidating this incompatibility will open new approaches for the therapy of secondary osteopenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app